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ABSTRACT

This paper contains the following results. For a sequence A, let "A
be the number of non-zero entries in it; suppose A, B and C =z (A+B) are
sequences that are the degrees of simple graphs; then if Zcif- 2(HA *u - 2),
there exists 2 realization of C having disjoint factors with degree sequences
A and B. At least one of these can be a forest. If A and B are forest

realizable, the conditions under which A, B and C can be simultaneously

realized with A- and B-factors that are forests are characterized.
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INTRODUCTION

Let A = (ai) and B = {bi} represent sequences of length n of integers,
ind suppose that there exist (simple) graphs Gl' GQ. 03 on n vertices such that

the degree of the jth vertex in Gl is aj. in 62 is bj’ and in G3 is

3 + bj' Th: sequences A, B and C = {ai + bl} are then said to be '"realizable

sequecnces'

a

A number of authors have considered the question of the simultaneous reali-

zation of such sequences; that is, of the existence of a graph G, realizing C

3
having an '"'A-factor'" (or subgraph having degree sequence A), (whose complement in

C is then a B-factor.) S. Kundu showed that if all the entries of B are k or

k + 1 then such a realization exists [5]; he also showed [6] that if A and B
are "tree realizable" (bj’ aj 21, :‘j s ij = 2n - 2) then the same result holds,

with the realizations of A and B both trees. One of the present authors (!.K.)

showed that the result holds if A and B are "forest realizable" (zaj 5_2(MA-1),

Ib; < 2{Mp-1) where M, is the number of nonzero index entries in X), though it

j X
riay not be possible for the realizations of A and B both to be forests [4]. On
the other h . he showed by an example that the condition Z(aj + bj) = u4(n - 1)

is not sufficient to guarantee that simultancous reali:ations exist [4].

I+ is the purpose of this paper to show that the condition

) (1)

n
g -2
.Z (aj + bj) < 20k, + My -2

i=1

does guarantee the existence of simultaneous realizations, and to provide a nrecise

T

characterization of the sequences for which A and B are forest realiiable yet

there is no simultaneous realization of A, B, and C with A and B forests. |




: '»)_}f,‘.“' v

SRR A e N
(R

Very little is known about realizable scquences A, B and C that are not
simultaneously realizabie. Koren has characterized those for which A is a '"claw" |

[3); it may well be that while such sequences are possible for £(aj + bj) >

'z(MA + M_ - 2) they may occur for only a very restricted class of sequences, and

B
characterization of that class may well be possible.

. omemmed

2. THEOREMS AND DISCUSSION OF PROOFS

Our main result is:

Theorem 1: Let A = {ail, B = {bi}’ C= {ai + bi} be realizable sequences of {
length n, for which (1) holds. Then A, B, and C are simultaneously reali-

zable. At leastoneof A or B can be a forest in a simultaneous realization.

T

We prove this by first noting that (if A, B and C are nontrivial) there

must be an index for which a and b are respectively (1,1),(1,2),(2,1),(1.0)

or (0,1).

We then, when there are 6 or more vertices, give a prescription for taking

such sequences and reducing them (o shorter sequences having the same properties,

or to sequences for which Kundu's factor theorem may be applied. When n is five
or less the graphs may be explicitly determined.

The prescription is basically this. A vertex vj that is to have degrees
aj and bj of (1,0) is to be connected in A (and C) to a vertex of largest
degree in A; similarly with A replaced by B for derr<es (0,1). This
connection is not always possible, since it may lead to a sequence C' which is
not realizable.

We shall, in section 3, indicate the exact circumstances in which this failure
can happen and, in section 4, exhibit a resolution. If there exists (1,1) vertex
but no (1,0) vertex, the (1,1) vertex will be split into two and hence the

sequences are reduced to the (1,0) case. This is done in section 5. Finally

when no (1,0),(0,1) or (1,1) vertices exist, we mcdify the sequences by
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vcplacing a (1,2) vertex by (1,0). Then we show how to construct realizations
of the original sequences from realizations of the modified sequences.

The same procedure yields as a second conclusion that if A and B are |
forest-realizable then A, B and C can be simultaneously realizable with A and

B forests if and only if certain conditions hold:

Theorem 2: Let A, B, C be realizable sequences as above with A and B

forest-realizable. Then C is realizable with two disjoint forest factors having

degrees
a)

A and B if and only if at least one of the following couditions holds.

Neither A nor B is a ''claw" with at least one isolated vertex. (By a

clav we mean that one vertex meets every arc.)

b)

c)

or

or

d)

t2(HA -1) or % 2(HB -1).

84 i

A is a claw and
cl) There is an index j with aj =0 and bj >1,

c2) B is a claw with the same 'center” as A.
c3) If a > 1 then bk = 0,

The same as condition ¢, with interchanged roles for A and B.

If none of these conditions hold, it is easily seen that the non-claw sequence

(A, say) can only be realized with a cycle, since zai = 2(HA-1), and any A-factor
will have at least two non-trivial components. In fact, A then can be realized
with exactly one cycle. The converse will be proven through our procedure. The

same arguments will also show the following:

Corollary: If A is not forest-realizable, then C has a realization in
which the B-factor is a forest, and the A-factor is connected except possibly for

isolated vertices.

3. CRITICAL SEQUENCES

Erdds and Gallai showed [1] that a sequence C: ¢ >c, 2 ... 2c of

nonnegative integers, with even sum, is realizable iff, for k = 1,...,n.

1l n
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I ci-k(k=1) < ] min(e,, k). (2)
i1 f=k+l

From now on, let us suppose that C = A + B is nonincreasing. It is easy to
see, that if c, *1 (an z 1, bn s 0, say) and if for each k, the right-hand
side of (2) exceeds the left-hand side at least by two, then we may connect Vn in
A and in C to a vertex of largecst degree in A.

We call a sequence k-critical if the right-hand side exceeds the left by at

most 1. We call the sequence completely k-critical or partially k-critical

depending on whether the difference is 0 or 1.

If a sequence is nartially k-critical, no vertex of degree k or less may be
connected to another such vertex by an arc in zny realization, but if there are no
other more restrictive criticalities, any other vertex may be linked by an arc to
any vertex in some realization o® C.

If a degree sequence is completely k-critical, ther no vertex of degree k or
lass can be linked by an arc to any vertex other than the first k.

In the next lemma, we summarize those properties of critical sequences which

also fulfill condition (1), which we will need for our proof.

Lemma 3: If C=c, > ... >c_ fulfills condition (1) and is k-critical than:

gl n

a) k <.

b) If k = 2, tbhen at most thrcc of the o bi' i > 3 may be larger than

1.

c) If kx = 3, 4 then a;s bi <1l for i >u.

Proof: Let Z, Y, X and W represent the number of vertices Ve i>k of

the form (1,0),(1,1),(2,0),(2,8"), respectively, with 2 > 2, ¢" > 1. (in this

lemma, the pairs are unordered). Let G realize C.
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Since C 1is critical, there are at least min(ci, k) edges in G Dbetween
the vertex vy (1 > k) and the set {Vl""vk) with at most one exemption, if

the criticality is partial. Hence:
1 Z 1 : - :
7Leg 235k (k=-1) ¢+ 2 + 27 + 2X + W-min(3,k) - 1.

Mote that the -1 appears only if C is partially k-critical, and then there is

at least one index i > k such that c; > k. On the other hand,

My ¢ MB =2<2k +Z+2Y+X+24-2

where the 2k accounts for the possibility that a5, by 21 for i=1,...,k.

Thus, by condition (1),

T (1) + X+ W - 1< 2K, (3)
The proof follows by substituting, in (3) appropriate values for k.

4. THE (C,1) AND (1,0) CASES

The proof of Theorem 1 is Lty induction.

We can verify our induction hypothesis by explicit construction in all cases
for five or fewer vertices. We therefore assume that we have six or more vertices.
For simplicity we assume that the degrec sequence B 1is forest-realizable (while
A may or may not be).

It is a result of Kundu that if all degrees of B (or A) are czerces or ones
then there exists a realization of C with A and B factors. We may therefore
restrict our intention to sequences for which at least one degree of A and one of
B are two or more.

In this section we assume cn = 1. We will examine five cases.

TP ETTS, 1 TR AN
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k.1, & n 0O AND C 1-CRITICAL

We first assume that C is completely one-critical. Then a + bl =n- 1.

Call the vertex of highest B degree v Then if bB < HB -1 and bl >1, we

B.
miy connect v to v rather than to Vas

will hold on the remaining vertices. Recall that sequence B is assumed to be

and all conditions of our theorem

forest-realizable.

Suppose by = My - 1; since a = 0. we have M, <&n-1l. Thus the (n-1) 1‘
edges touching vy and the (MB - 2) oth.r edges touching Vg will account for j]
all MA + MB - 2 edges. and we must havc MA =n -~ 1, and hence a, = 1. But if
ag = 1, we have ¢, =n- 1>M and ¢y = Mps which imply the exister.ce of at i
least HA + MB - 1 edges, a contradiction.

Suppose instead that bB < MB -1, but bl = 1; then the degrees of vertex

.Q vy are (n-2, 1). We connect vy to every vertex in A except i which we

connect it to in B. The remaining dagree sequences A, B and C obviously will
all be realizable. We need only show that condition (1) still holds after these
connections are made. The left-hand side, after these connections diminishes by
2(n-1) or at least 2MA’ If any part of A remz2ins to be constructed, the new

(MA - 1) 1is at least one, while M, has diminished by 2; the right-hand side

B
has diminished by at most 2((MA - 2) + 2) so that the izequality still holds. If

A is entirely constructed, one can simply recalize B 2nd the inequality is

R
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irrelevant.

L
TR

Ot

The case that C 1is partially one critical is similar.

Let us say that a sequence is super-k-critical if it violates condition (2),

Ty L -
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for k. We will treat now the "symmetric" case:

e

4.2, bn = 0 AND C 1-CRITICAL

The same arguments hold except that A may not be forest-realizable. Call

the vertex of highest degree v It is necessary to verify that if

Ac
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a, + b1 =n-1, a,> l, and a, < MA - 1, then connecting Vi to Vi does not

make A super-k-critical for k :.2. We may assume that A 1is originally

k-critical for some k > 2. The number of arcs of A other than those connecting

to v, must be at least M, - 2 and equal to it only if all A degrees except LE

1 A
three are ones. The total number of arcs in C would then necessarily be at least
MA -2+ 3, + b1 = n+ MA - 3. Since MB'E.“ - 1, this bound is MA + MB -2
which must therefore be an equality. This implies MB =n-1, bl =n- 2, a = 1, LE
in this case both A and B are tree realizable sequences and B is a claw so i

that its realization is trivial and A may be realized from the remainder as in

the previous case.

The cases with higher criticalities are simpler:

4.3. C _u4-CRITICAL

There is no problem here since all connections will in our procedure

automatically be made toward the four largest degree vertices, avoiding U-super-

criticality.

4.4, C 3-CRITICAL

This case presents a problem of supercriticality only if the suggested
connections of vn involve a vertex other than vl, v2 or v3. Since the
connections indicated go to vertices with a; or bi > 2, the only way this
could happen would be if a, (say) = 2; again this would be a problem only if
a Ta,=a,s= 1l and bn = 0. In either <?-e, if the sequence B is to avoid

1
super-criticality, we must have a, = 0 for n=1i>4, and as already noted

bi <1 for n#}i>u,
We may therefore consider a vertex v,, and treat it, rather than vn and

avoid this problem, unless there are no such vertices, so that n = 5.




4.5. C 2-CRITICAL

Ae in the previous case, trouble can arise only if (say) a, =a,r* 1 while

(say) a, s 2. If this should occur, then B non-super 2-criticality implies that

(a,, ba) = (2,1), (a,, b)) = (1,2) and a, = 0 for n $ 1 >4, Again, this case

4 i
may be avoided by connecting 1 for n$ i > 4 before va unless n = 5.
We have shown how to proceed with the induction hypothesis if ¢, ® 1. In

order to finish the proof we show in the next two sections how to reduce the other

cases into this one.

S. THE (1,1) CASE

If (an, hn) = (1,1), we replace v by two vertices vé n (1,0) and
v; ~ (0,1); that is, we change A into A' = (al,...,an,o) and B into
B' = (bl,...,bn_l,o,l). These changes do not destroy the realizability of A', B’
or C' (= A' + B'), and, of course, condition (1) holds for A', B' and C'.

Let G' be a realization of C', having an A'-factor GA and a B'-factor

G' - GA = Gé. If v; and v; have no common neighbor in G', we obtain a

desired realization G of C simply by contracting them into a vertex v,
o ' ' 1 ' S 3
Suppose that (vn, vr) € GA and (vn, vr) € GB' In this cac?, since
Ch < (n+l) - 1, we may choose a vertex Vgs such that (v_, vr)¢ G'. Leu

< ~ 1 ] * R
(Vs’ Jt) e G', say, (vs, vt) £ GA' In GA we may replace the edges

(v;, vr), (vs, vt) by (vé, Vt)’ (vr, vs). After this '"interchange', we can

contract v; and v;. as before.
For the proof of Theorem 2, we have now to show how to modify the contraction,

when the interchange introduces new cycles into G This may happen only when

A’
there is a path in GA between Ve and Vs and Ve is not connected by a path

in GA to any vertex of the path except through v In this case, we have a

cycle in GA (after the contraction) which passes through (vr, vs). If




(Vs vt) ¢ G, then, since (vn, v‘) ¢ G, we may apply a (vr, v.), (vn, vt)

intercha.ge, and "destroy' the cycle. Suppose, therefore, that (vt. vr) € GB'

Let v, be the neighbor of Ve in the cycle,other than Vi Since the inter-

|

change and contraction exclude (vt, vs) from G, and since (vn, vj) ¢ G, the

- S
AR i

interchange from (vn, vt), (vs, vj) to (vn, vj), (vs, vt) in A removes the
cycle.
In the next section we assume that there are no (1,0), (0,1) or (1,1)

vertices, and hence there are (1,2) or (2,1) vertices.

6. THE (2,1) OR (1,2) CASE

The connection procedure involved here is to reduce the degrees of a vertex
vj for example from (2,1) to (0,1). The idea here is that if the remainin;
sequences are all realizable then we can realize them and then insert the vertex
v, on any arc in A 1in the realization connecting two vertices other than the
one to which vj gets connected to in B.

1t is clear that this degree change preserves condition (1), and doesn't
effect B or its realizability at all. If follows from Lemma 2, from the
assumption n> 6 and from the assumption that there are no (1,0), (0,1) or
(1,1) wvertices, that the realizability of C is not affected. Thus we can employ
this procedure so long as

1. It does not destroy A realizability, and

2. We are assured that after the rcalization, the vertex v, can be
o

rcconnected, which will follow if no vertex of A touches every one of A's edges.
We will show that changing aj =2 to aj = 0 cannot effect the realizability

of A here; and that reconnecting vj can produce no difficulty. Note that if

there are no (1,0), (0,1) or (1,1) vertices, then by condition (1), there are

at least four vertices from the set {(2,1), (1,2)}. Therefore, we may assume that

at least two vertices have degrees (2,1).

The firet result is the following lemma

Lo e ———
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Lemma 4: Let C= A +B bea degree sequence having no degrees (0,1), (1,0)
or (1,1) and satisfying conditicn (1) with at least two vertices having degrees
(2,1) with A, B, and C realizable. Then if the degrees of vj are altered

from (2,1) to (0,1) the new degree sequence A is still realizable.

Proof: Otherwise, the new A would violate some Erdos-Gallai condition; now

the number of arcs in B 1is at least MB - 8/2 where s 1is the number of

vertices having degree one in B. Each vertex counted by s muit have degree 2

or more in A.

1 = MA-l,

and there must have been at least MA -1+ s8/2 arcs in A, MA-l connecting to

v1 and at least 8/2 others. This violates condition (1). If the k= 2 or

higher Erdos-Gallai conditions were violated, the number of arcs in A would be

Suppose the k = 1 Erdos-Gallai condition were violated; then a

at least MA +35-2 and s is at least 2, which still violates (1) (for
example for k = 2, after the change counting one arc for the second vertex one
arc for every vertex after the second and a second arc for every vertex after the
second having degree 2 or more (at least min{s - 2,0} of these), the sequence
would have to be 2-supercritical; the total number of arcs in A is at least
greater than M, +s -3 or if s <2 than M,.

We now consider the final condition to be proven.

Lemma 5: With the hypothesis of Lemma 4 either no vertex in the "new" A

meets all A's edges, or the same is true in B, for n > 4.

Proof: If a vertex in A was to meet every arc of A, then a, = MA-l.
If HA - 1 >3, the second vertex having degrees (2,1) will have an edge
passing through it in A that fails to meet v., as desired. If MA-l = 2, then

that vertex could be v which would mean that the original A degree sequence

1’
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was {(2,2,1,1,0,0,...,0}). The original B degree sequence would have to be at
least (1,1,2,2,2,...} since n > 4, and by interchanging A and B here we
can obtain the desired result.

We have thus indicated how our procedures apply in all cases, and the proof

is complete.

We notice, that every step of the construction except one always preserves
the tree-like or forest-like nature of what is constructed. Connecting vertices
of degree 1 in A or B of course maintains that structure; but in addition,

the procedures above assure that the remaining degree sequences are tree-like

L A 2l A
.

since every edge i3 connected to vertex of at least 2 except in case 4.1 when i

a, =1,

For a degree sequencc A to be forest-realizable, it nust have a number of

arcs no greater than MA-l. 4

Therefore 1f A and/or B are forest-realizable, the construction

procedure upon iteration will yield realizations that are forests, unless at some
stage case 4.1 (or 4.2) occurs; at that stage C is critical, with a = 1, and
C = (1,0). This means that b1 =n -2, and B is 1l-critical also.

It is easy to see that this configuration can only arise as intermediate

stage after only step 4.1 and step 4.2 edge assignments have been made. It will

lead to a realization that is not a forest for A if and only if the number of

:
4 F.
k o
;
&
g

§ 3
H

4

y

3

4

arcs of A 1is MA-l, since after the connection of vy HA is then reduced by 1

two but the number of A edges by only one.

PUPICITER
9

For this to occur, the original A, B and C nust have had a vertex v1 :

critical in B; must have had no vertex hiving degree 2 or more in A and degree

0 in B; and must satisfy (1) as an equality. These are the conditions of

Theorem 2.
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Obviously the same remarks hold for A and B interchanged. If A is not
forest-realizable, then this can never happen for B and the rsalization of B
will always be forest-like. If this case occurs, it obviously occurs only for
one of A and B, and the realization of the other will be a forest.

This completes the proof of Theorems 1 and 2. Similar.arguments prove the

corollary to Theorem 2.

7. CONCLUSIONS

The arguments above can fail in a number of different ways when condition (1)
is not satisfied. Some of these lead to classes of degree sets A, B, C, that
are not simultaneously realizable, though each of 3, B, and ¢ is. It is

possible that the nature of such sets can be characterized through considerations

of this kind.
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